Preface |
|
vii | |
|
|
1 | (16) |
|
|
1 | (13) |
|
|
14 | (3) |
|
|
17 | (32) |
|
|
17 | (3) |
|
|
20 | (3) |
|
|
23 | (7) |
|
|
30 | (4) |
|
|
34 | (10) |
|
|
44 | (5) |
|
Estimation for filtered counting process data |
|
|
49 | (32) |
|
Filtered counting process data |
|
|
49 | (13) |
|
|
62 | (8) |
|
|
70 | (4) |
|
|
74 | (7) |
|
Nonparametric procedures for survival data |
|
|
81 | (22) |
|
The Kaplan-Meier estimator |
|
|
81 | (5) |
|
|
86 | (9) |
|
Comparisons of groups of survival data |
|
|
86 | (7) |
|
|
93 | (2) |
|
|
95 | (8) |
|
|
103 | (72) |
|
|
108 | (8) |
|
Inference for additive hazards models |
|
|
116 | (10) |
|
Semiparametric additive hazards models |
|
|
126 | (9) |
|
Inference for the semiparametric hazards model |
|
|
135 | (11) |
|
Estimating the survival function |
|
|
146 | (3) |
|
|
149 | (2) |
|
Goodness-of-fit procedures |
|
|
151 | (8) |
|
|
159 | (6) |
|
|
165 | (10) |
|
Multiplicative hazards models |
|
|
175 | (74) |
|
|
181 | (12) |
|
Goodness-of-fit procedures for the Cox model |
|
|
193 | (12) |
|
Extended Cox model with time-varying regression effects |
|
|
205 | (8) |
|
Inference for the extended Cox model |
|
|
213 | (5) |
|
A semiparametric multiplicative hazards model |
|
|
218 | (6) |
|
Inference for the semiparametric multiplicative model |
|
|
224 | (2) |
|
Estimating the survival function |
|
|
226 | (1) |
|
Multiplicative rate models |
|
|
227 | (1) |
|
Goodness-of-fit procedures |
|
|
228 | (6) |
|
|
234 | (6) |
|
|
240 | (9) |
|
Multiplicative-Additive hazards models |
|
|
249 | (44) |
|
The Cox-Aalen hazards model |
|
|
251 | (22) |
|
|
252 | (3) |
|
Inference and large sample properties |
|
|
255 | (5) |
|
Goodness-of-fit procedures |
|
|
260 | (6) |
|
Estimating the survival function |
|
|
266 | (4) |
|
|
270 | (3) |
|
Proportional excess hazards model |
|
|
273 | (17) |
|
Model and score equations |
|
|
274 | (2) |
|
|
276 | (4) |
|
|
280 | (3) |
|
Goodness-of-fit procedures |
|
|
283 | (1) |
|
|
284 | (6) |
|
|
290 | (3) |
|
Accelerated failure time and transformation models |
|
|
293 | (20) |
|
The accelerated failure time model |
|
|
294 | (4) |
|
The semiparametric transformation model |
|
|
298 | (11) |
|
|
309 | (4) |
|
Clustered failure time data |
|
|
313 | (34) |
|
Marginal regression models for clustered failure time data |
|
|
314 | (20) |
|
Working independence assumption |
|
|
315 | (12) |
|
Two-stage estimation of correlation |
|
|
327 | (3) |
|
One-stage estimation of correlation |
|
|
330 | (4) |
|
|
334 | (4) |
|
|
338 | (9) |
|
|
347 | (28) |
|
|
351 | (5) |
|
Cause specific hazards modeling |
|
|
356 | (5) |
|
|
361 | (9) |
|
|
370 | (5) |
|
Marked point process models |
|
|
375 | (36) |
|
Nonparametric additive model for longitudinal data |
|
|
380 | (9) |
|
Semiparametric additive model for longitudinal data |
|
|
389 | (4) |
|
|
393 | (4) |
|
|
397 | (11) |
|
|
408 | (3) |
Khmaladze's transformation |
|
411 | (4) |
Matrix derivatives |
|
415 | (2) |
The Timereg survival package for R |
|
417 | (36) |
Bibliography |
|
453 | (14) |
Index |
|
467 | |