Preface |
|
xix | |
|
|
1 | (48) |
|
Combinatorial Optimization |
|
|
1 | (7) |
|
|
4 | (2) |
|
Hard Problems versus Easy Problems |
|
|
6 | (2) |
|
|
8 | (2) |
|
States, Moves, and Optimality |
|
|
10 | (1) |
|
|
11 | (4) |
|
Deterministic and Stochastic Algorithms |
|
|
13 | (2) |
|
Optimal versus Final Solution |
|
|
15 | (1) |
|
Single versus Multicriteria Constrained Optimization |
|
|
16 | (2) |
|
Convergence Analysis of Iterative Algorithms |
|
|
18 | (2) |
|
|
18 | (2) |
|
|
20 | (6) |
|
Time-Homogeneous Markov Chains |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (3) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (3) |
|
Summary and Organization of the Book |
|
|
29 | (20) |
|
|
33 | (3) |
|
|
36 | (13) |
|
|
49 | (60) |
|
|
49 | (4) |
|
|
50 | (3) |
|
Simulated Annealing Algorithm |
|
|
53 | (4) |
|
|
57 | (9) |
|
Parameters of the SA Algorithm |
|
|
66 | (7) |
|
A Simple Cooling Schedule |
|
|
67 | (1) |
|
A Statistical Polynomial Time Cooling Schedule |
|
|
68 | (4) |
|
An Efficient General Cooling Schedule |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (6) |
|
VLSI Placement and Timber Wolf3.2 |
|
|
75 | (5) |
|
A Brief Overview of Other Applications |
|
|
80 | (1) |
|
|
81 | (10) |
|
|
82 | (1) |
|
Multiple-Trials Parallelism |
|
|
83 | (8) |
|
Conclusions and Recent Work |
|
|
91 | (18) |
|
|
93 | (5) |
|
|
98 | (11) |
|
|
109 | (74) |
|
|
109 | (10) |
|
|
110 | (1) |
|
|
111 | (8) |
|
|
119 | (1) |
|
Schema Theorem and Implicit Parallelism |
|
|
119 | (7) |
|
|
122 | (3) |
|
|
125 | (1) |
|
|
126 | (4) |
|
GA without Mutation or Inversion |
|
|
127 | (1) |
|
GA with Crossover and Mutation |
|
|
128 | (2) |
|
|
130 | (12) |
|
|
131 | (6) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (3) |
|
|
142 | (4) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
146 | (10) |
|
Traveling Salesman Problem |
|
|
147 | (4) |
|
|
151 | (2) |
|
Applications of GAs to Other Problems |
|
|
153 | (3) |
|
|
156 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
Neighborhood or Cellular Model |
|
|
157 | (1) |
|
Other Issues and Recent Work |
|
|
158 | (6) |
|
|
158 | (1) |
|
Gray versus Binary Encoding |
|
|
159 | (1) |
|
Niches, Crowding, and Speciation |
|
|
159 | (2) |
|
Constant versus Dynamically Decreasing Population |
|
|
161 | (1) |
|
Multiobjective Optimization with GAs |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (19) |
|
|
165 | (8) |
|
|
173 | (10) |
|
|
183 | (70) |
|
|
183 | (2) |
|
|
185 | (9) |
|
Implementation-Related Issues |
|
|
194 | (12) |
|
|
194 | (1) |
|
Tabu List and Tabu Restrictions |
|
|
195 | (3) |
|
Data Structure to Handle Tabu Lists |
|
|
198 | (6) |
|
Other Aspiration Criteria |
|
|
204 | (2) |
|
Limitations of Short-Term Memory |
|
|
206 | (5) |
|
Intermediate-Term Memory (Search Intensification) |
|
|
207 | (1) |
|
Long-Term Memory (Search Diversification) |
|
|
208 | (3) |
|
Examples of Diversifying Search |
|
|
211 | (4) |
|
Diversification in Quadratic Assignment (QAP) |
|
|
211 | (3) |
|
Diversification in Multiprocessor Scheduling |
|
|
214 | (1) |
|
|
215 | (2) |
|
|
217 | (5) |
|
|
218 | (2) |
|
Bandwidth Packing Problem (BWP) |
|
|
220 | (2) |
|
|
222 | (6) |
|
Other Issues and Related Work |
|
|
228 | (12) |
|
Neighborhood, Evaluator Functions, Stopping Criteria |
|
|
228 | (2) |
|
|
230 | (4) |
|
Candidate List Strategies |
|
|
234 | (3) |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
240 | (13) |
|
|
242 | (6) |
|
|
248 | (5) |
|
Simulated Evolution (SimE) |
|
|
253 | (46) |
|
|
253 | (1) |
|
|
254 | (1) |
|
Simulated Evolution Algorithm |
|
|
254 | (10) |
|
|
258 | (3) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (2) |
|
|
264 | (1) |
|
SimE Operators and Parameters |
|
|
264 | (2) |
|
|
265 | (1) |
|
|
265 | (1) |
|
Effect of Number of Populations |
|
|
266 | (1) |
|
Effect of Number of Iterations |
|
|
266 | (1) |
|
Comparison of SimE, SA, and GA |
|
|
266 | (2) |
|
|
268 | (3) |
|
|
271 | (13) |
|
Standard-Cell Design Style |
|
|
271 | (12) |
|
Other Applications of SimE |
|
|
283 | (1) |
|
|
284 | (4) |
|
Implementation of SimE on Vector Processors |
|
|
284 | (2) |
|
Implementation of SimE on MISD and MIMD Machines |
|
|
286 | (2) |
|
Conclusions and Recent Work |
|
|
288 | (11) |
|
|
289 | (3) |
|
|
292 | (7) |
|
Stochastic Evolution (StocE) |
|
|
299 | (46) |
|
|
299 | (1) |
|
|
300 | (1) |
|
Stochastic Evolution Algorithm |
|
|
301 | (8) |
|
|
304 | (3) |
|
|
307 | (1) |
|
|
308 | (1) |
|
Stochastic Evolution Convergence Aspects |
|
|
309 | (3) |
|
Stochastic Evolution Applications |
|
|
312 | (20) |
|
|
312 | (1) |
|
|
312 | (3) |
|
Hamiltonian Circuit Problem |
|
|
315 | (4) |
|
Traveling Salesman Problem |
|
|
319 | (1) |
|
StocE-Based Technology Mapping of FPGAs |
|
|
320 | (12) |
|
Parallelization of Stochastic Evolution |
|
|
332 | (5) |
|
Conclusions and Recent Work |
|
|
337 | (8) |
|
|
338 | (3) |
|
|
341 | (4) |
|
|
345 | (34) |
|
|
345 | (1) |
|
|
346 | (2) |
|
|
348 | (4) |
|
|
348 | (1) |
|
|
349 | (2) |
|
|
351 | (1) |
|
GA and Multiobjective Optimization |
|
|
352 | (4) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
354 | (2) |
|
Fuzzy Logic for Multiobjective Optimization |
|
|
356 | (6) |
|
|
356 | (2) |
|
|
358 | (1) |
|
|
358 | (1) |
|
Example of Fuzzy Multiobjective Optimization |
|
|
359 | (2) |
|
Fuzzy Goal Directed Optimization |
|
|
361 | (1) |
|
Artificial Neural Networks |
|
|
362 | (5) |
|
|
367 | (3) |
|
|
370 | (9) |
|
|
372 | (4) |
|
|
376 | (3) |
About the Authors |
|
379 | (2) |
Index |
|
381 | |