Nonlinear Wave Methods for Charge Transport

by ;
Edition: 1st
Format: Hardcover
Pub. Date: 2010-03-01
Publisher(s): Wiley-VCH
List Price: $207.99

Buy New

Usually Ships in 3-4 Business Days
$207.78

Rent Textbook

Select for Price
There was a problem. Please try again later.

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

The present book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level that is suitable for graduate students, researchers and faculty throughout the natural sciences and engineering. The practice of implementing these techniques and their value are largely realized by showing their application to problems of nonlinear wave phenomena in electronic transport in solid state materials, especially bulk semiconductors and semiconductor superlattices. The authors are recognized leaders in this field, with more than 30 combined years of contributions.

Author Biography

Luis L. Bonilla received his Ph.D. in physics from the Universidad Nacional de Educacion a Distancia (UNED), Madrid, in 1981. After conducting postdoctoral research for three years at the Mathematics Department at Stanford University, he took positions as associate professor at the Universities of Sevilla and Barcelona, both Spain. In 1992, he accepted his current post of Professor of Applied Mathematics at the University Carlos III in Madrid. Professor Bonilla's research interests lie in the modeling and asymptotic analysis of nonlinear problems in condensed matter physics, including electronic and mechanical properties. He is the author and co-author of more than 180 research papers and book chapters.

Stephen W. Teitsworth received his Ph.D. in Physics in 1986 from Harvard University, where he also carried out postdoctoral research. For the past several years, he has been a faculty member of the Physics department at Duke University. His current research interests center on experimental and theoretical studies of nonlinear electronic transport and optoelectronic properties of semiconductor-based materials, with a focus on spatially periodic systems such as superlattices.

Table of Contents

Introduction
Ordinary Differential Equations and Asymptotic Methods
Excitable Media 1: Pulses, Fronts, Wave Trains in Continuous Media
Excitable Media 2: Discrete Systems
Electronic Transport in Condensed Matter: From Quantum Kinetics to Drift-Diffusion Models
Bulk Semiconductor Systems: The Gunn Effect
Bulk Semiconductor Systems: The Case of Field-Dependent Trapping
Semiconductor Superlattices
Application to other Systems and the Road ahead
Review of Basic Concepts of Solid State Physics
Detailed Arguments to go from Quantum Kinetic Equations to Boltzmann Transport
Details and Examples of Numerical Methods employed for Simulation
Glossary of Terms
Table of Contents provided by Publisher. All Rights Reserved.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.